25.01.2023 09:00 bis 25.01.2023 12:30
Die Kraft der Sonne
MINT-Förderung mit Wirkung (Mathematik, Informatik, Naturwissenschaften und Technik). Seit 2007 organisiert die SATW TecDays an Schweizer Mittelschulen. Während eines ganzen Tages besuchen die Schüler:innen praktisch-interaktive Module nach Wahl, wo sie sich mit Fachpersonen austauschen und in technisch-naturwissenschaftliche Themen und Anwendungen eintauchen können.
Unser Workshopbeitrag: Modul 28 «Solarpower – Was steckt hinter der gewaltigen Kraft der Sonne?»
Ohne Sonne kein Leben. Ohne Sonne keine Energie. Fast alle Energiequellen gibt es nur dank der Sonne. Die Sonne ist unsere grösste Energiequelle - allerdings gibt es beid der Nutzung der Sonnenenergie noch viel Luft nach oben. Warum das so ist und wie wir diese Energie noch besser nutzen können, werden wir gemeinsam herausfinden. Zusätzlich könnt ihr eine kleine Solaranwendung bauen, welch ihr selbstverständlich behalten dürft.
Im Aufrtag von
Veranstalter
Schweizerische Akademie der Technischen Wissenschaften SATW
Datum und Ort
25.01.2023, Gymnasium Kirschgarten BS
Die Kraft der Sonne
37
15.7 kg
2
3.5 h
8.6 km
0 kWh
Berechnungsweise
Folgenden Formeln verwenden wir in unserem Veranstaltungs-Counter
Berechnung PV-Strom in kW/h:
Unsere mobilen Solarkraftwerke sind mit jeweils drei PV-Modulen à 54 W ausgerüstet. Je nach Veranstaltung, Strom- und Materialbedarf werden bis zu vier Solaranhänger eingesetzt. Wir zählen die Anzahl eingesetzter Solarkraftwerke und die Sonnenstunden.
Wh = Anzahl Solar-Anhänger • 150 W • Sonnenstunden
kWh = Anzahl Solar-Anhänger • 150 W • Sonnenstunden ÷ 1'000
Berechnungsgrundlage Eingespartes CO2:
Nomatark produziert – von der Atmung abgesehen – sowohl beim Transport als auch bei der Aufbereitung des Stroms kein Kohlenstoffdioxid. Als Reverenz nutzen wir den CO2-Ausstoss eines durchschnittlichen benzinbetriebenen Pkw addiert mit den Abgasen eines, für die Stromerzeugung handelsüblichen, benzinbetriebenen Stromaggregats.
Bei der Verbrennung eines Liters Benzin (0.74 kg) bilden sich ca. 2.34 kg CO2 (und Wasserdampf). Dazu werden rund 10.4 kg bzw. 10‘000 Liter Luft benötigt. Bei einem Sauerstoffanteil von 21% sind dies ca. 2.2 kg Sauerstoff.
Ein Pkw entspricht dem Ladevolumen von drei Fahrradanhänger.
Referenzwerte für CO2
Benzinverbrauch Generator: 1.3 L/h
CO2-equ. Benzin: 2.37 kg/L
CO2-equ. Pkw: 1.9764 kg/km
CO2-equ. E-Bike: 0.1527 kg/km
CO2-equ. PV: 42 g/kWh
Formel für CO2:
CO2 Einsparung durch Transport in kg: Distanz in km • (Anzahl Pkw • CO2-equ. Pkw - Anzahl E-Bike • CO2-equ. E-Bike) = km • (Pkw • 1.9764 - E-Bike • 0.1527)
CO2 Einsparung durch PV in kg: Sonnenstunden • 1.3 • 2.34 - 42 g/kWh
Berechnung km:
Hin- und Rückweg ab unserem Atelier an der Kleinhüningerstrasse 205 in Basel-Stadt. Der Fahrtweg wird via Google Maps eruiert. Egal wie viele Fahrräder und Fahrer:innen eingesetzt werden, als Fahrtweg zählt nur die Strecke zwischen Lager und Veranstaltungsort. Zusätzliche Fahrten (Einkäufe und Personentransporte) vor und während der Veranstaltung werden nicht berücksichtigt.
Anzahl Anlässe:
Jeder Veranstaltungstag wird einzeln gezählt. Mehrtägige Events werden als mehrere Anlässe gewertet. Finden an einem Tag mehrere, von einander unabhängige Veranstaltungen statt, so werden diese ebenfals einzeln gezählt. Workshops an Schulen werden pro Klasse gezählt.
Quellen:
CO2-Äquivalente PV: Ökobilanz Strom aus Photovoltaikanlagen, Factsheet v1.0, Update 2020, treeze Ltd.
Umweltbilanzierung von Verkehrsmitteln: Matthias, Tuchschmidt, Halder, Markus (Hrsg.): mobitool Grundlagebericht. Bern: Schweizerische Bundesbahnen, SBB 2010.
Benzinverbrauch Generator: Stromagregat Berlan BSTE, 4-Takt Benzin, 2'500 W